Compare commits

..

No commits in common. "1a49aa377992a40d869b1891412832854c58df03" and "c6d779f591887c2be28a6b6ca4668e7a187363e5" have entirely different histories.

7 changed files with 13 additions and 58 deletions

View file

@ -3,8 +3,6 @@
"tags": ["dummy"],
"file": "model.py",
"output_type": "video/mp4",
"inputs": {
"file": {"type": "file"}
}

View file

@ -1,3 +1,4 @@
import json
import typing
@ -7,5 +8,5 @@ def load(model) -> None:
def unload(model) -> None:
pass
async def infer(model, file) -> typing.AsyncIterator[bytes]:
yield await file.read()
def infer(model, file) -> typing.Iterator[bytes]:
yield json.dumps({"hello": "world!"}).encode("utf-8")

View file

@ -1,4 +1,3 @@
import asyncio
import json
import os
import typing
@ -11,11 +10,6 @@ from source import model, api
class ModelManager:
"""
The model manager
Load the list of models available, ensure that only one model is loaded at the same time.
"""
def __init__(self, application: api.Application, model_library: os.PathLike | str):
self.application: api.Application = application
self.model_library: Path = Path(model_library)
@ -26,14 +20,9 @@ class ModelManager:
self.models: dict[str, model.base.BaseModel] = {}
# the currently loaded model
# TODO(Faraphel): load more than one model at a time ?
# would require a way more complex manager to handle memory issue
# having two calculations at the same time might not be worth it either
# TODO(Faraphel): load more than one model at a time ? require a way more complex manager to handle memory issue
self.current_loaded_model: typing.Optional[model.base.BaseModel] = None
# lock to avoid concurrent inference and concurrent model loading and unloading
self.inference_lock = asyncio.Lock()
@self.application.get("/models")
async def get_models() -> list[str]:
"""

View file

@ -50,7 +50,7 @@ class PythonModel(base.BaseModel):
parameters = utils.parameters.load(configuration.get("inputs", {}))
# create an endpoint wrapping the inference inside a fastapi call
async def infer_api(**kwargs) -> fastapi.responses.StreamingResponse:
async def infer_api(**kwargs):
# NOTE: fix an issue where it is not possible to give an UploadFile to a StreamingResponse
# NOTE: perform a naive type(value).__name__ == "type_name" because fastapi do not use it own
# fastapi.UploadFile class, but instead the starlette UploadFile class that is more of an implementation
@ -61,12 +61,8 @@ class PythonModel(base.BaseModel):
}
return fastapi.responses.StreamingResponse(
content=await self.infer(**kwargs),
content=self.infer(**kwargs),
media_type=self.output_type,
headers={
# if the data is not text-like, mark it as an attachment to avoid display issue with Swagger UI
"content-disposition": "inline" if utils.mimetypes.is_textlike(self.output_type) else "attachment"
}
)
infer_api.__signature__ = inspect.Signature(parameters=parameters)
@ -77,12 +73,6 @@ class PythonModel(base.BaseModel):
infer_api,
methods=["POST"],
tags=self.tags,
# summary=...,
# description=...,
response_class=fastapi.responses.StreamingResponse,
responses={
200: {"content": {self.output_type: {}}}
},
)
def _load(self) -> None:
@ -91,5 +81,5 @@ class PythonModel(base.BaseModel):
def _unload(self) -> None:
return self.module.unload(self)
def _infer(self, **kwargs) -> typing.Iterator[bytes] | typing.Iterator[bytes]:
def _infer(self, **kwargs) -> typing.Iterator[bytes]:
return self.module.infer(self, **kwargs)

View file

@ -106,21 +106,20 @@ class BaseModel(abc.ABC):
Do not call manually, use `unload` instead.
"""
async def infer(self, **kwargs) -> typing.Iterator[bytes] | typing.AsyncIterator[bytes]:
def infer(self, **kwargs) -> typing.Iterator[bytes]:
"""
Infer our payload through the model within the model manager
:return: the response of the model
"""
async with self.manager.inference_lock:
# make sure we are loaded before an inference
self.load()
# make sure we are loaded before an inference
self.load()
# model specific inference part
return self._infer(**kwargs)
# model specific inference part
return self._infer(**kwargs)
@abc.abstractmethod
def _infer(self, **kwargs) -> typing.Iterator[bytes] | typing.AsyncIterator[bytes]:
def _infer(self, **kwargs) -> typing.Iterator[bytes]:
"""
Infer our payload through the model
:return: the response of the model

View file

@ -1,2 +1 @@
from . import parameters
from . import mimetypes

View file

@ -1,21 +0,0 @@
def is_textlike(mimetype: str) -> bool:
"""
Determinate if a mimetype is considered as holding text
:param mimetype: the mimetype to check
:return: True if the mimetype represent text, False otherwise
"""
# check the family of the mimetype
if mimetype.startswith("text/"):
return True
# check applications formats that are text formatted
if mimetype in [
"application/xml",
"application/json",
"application/javascript"
]:
return True
# otherwise consider the file as non-text
return False